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Abstract
In this paper we present a model which allows numerical studies of ferrofluid
dynamics taking into account the internal magnetic degrees of freedom of the
ferrofluid particles. In standard ferrofluid models the magnetic moment of a
ferrofluid particle is supposed to be fixed with respect to the particle itself,
which corresponds to the limit of an infinitely high single-particle magnetic
anisotropy. In contrast to this strongly simplifying assumption, we take into
account that in real ferrofluids the magnetic moments of ferrofluid particles are
allowed to rotate with respect to the particles themselves. Our model results in a
system of equations of motion describing both magnetic and mechanical degrees
of freedom, where the ‘magnetic’ equations are coupled with the ‘mechanical’
equations via (i) the interparticle distances determining the magnetodipolar
interaction fields and (ii) orientations of the particle anisotropy axes with respect
to their magnetic moments which define the mechanical torque on the particle.

Using our model we have studied the ferrofluid magnetization dynamics
for various particle concentrations, i.e., for various magnetodipolar interaction
strengths. In particular, we present numerical results (a) the magnetization
relaxation of a ferrofluid after the external field is switched off and (b)
the frequency dependence of the ferrofluid AC susceptibility. Comparing
these results with the corresponding dependences obtained for the rigid
dipoles model, we demonstrate that for magnetic anisotropy values typical for
commonly used ferrofluid materials (like magnetite) the inclusion of ‘magnetic’
degrees of freedom is qualitatively essential to obtain a correct description of the
ferrofluid dynamics.
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Introduction

In this paper we use a mesoscopic approach for theoretical studies of ferrofluid dynamics. This
approach differs from both (i) the microscopic formalism, where a true molecular structure of a
ferrofluid (solvent molecules surrounding magnetic particles coated with surfactant molecules)
is considered, and (ii) macroscopic phenomenology, where a ferrofluid is considered as a
continuum characterized via macroscopic parameters such as average viscosity and magnetic
susceptibility, which exhibit a complicated dependence on the applied field and mechanical
shear stress. In the mesoscopic treatment a ferrofluid consists of fine magnetic particles
immersed into a carrier fluid with a known viscosity. Particles are usually so small that they
can be considered as single-domain, i.e., their magnetic moment magnitudes are constant and
do not depend on the applied field. The surfactant layer coating each particle is included into
the calculation as a non-magnetic particle shell causing a (more or less postulated) repulsive
potential. This potential prevents particle aggregation occurring due to the magnetodipolar
attraction of magnetic moments by their suitable mutual orientation.

The advantages of this mesoscopic approach are well known: on the one hand, the
transition from a microscopic treatment on a molecular level to the formalism where a carrier
fluid is considered as a continuous medium and magnetic particles as dipoles with prescribed
geometric and magnetic parameters greatly simplifies the problem. From the point of view of
numerical simulations presented in this paper this means that the physical volume of the system
which can be successfully studied in a reasonable computer time increases by many orders
of magnitude. On the other hand, explicitly taking into account the spatial arrangement of
particles and directions of their magnetic moments enables the studies of a ferrofluid properties
‘nearly from first principles’, avoiding hardly controllable a priori assumptions concerning the
behaviour of the macroscopic ferrofluid characteristics (viscosity and susceptibility) needed to
successfully develop a macroscopic theory.
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The price to pay for the advantage over a macroscopic approach is a still very high
complexity of a system. Several competing short- and long-range interactions make an
analytical solution of any realistic problem impossible, so that numerical simulations are
required. Among various methods used for simulations of such systems the Langevin dynamics
(LD) is a most suitable one, especially by studying fast magnetization dynamics, because
LD uses the solution of stochastic equations of motion for all relevant ferrofluid degrees of
freedom, thus allowing us to include into consideration in a self-consistent way not only
all the deterministic interactions between ferrofluid particles, but also the effects of thermal
fluctuations.

1. Ferrofluids with internal magnetic degrees of freedom: basic formalism

1.1. Langevin dynamics equations

We begin with the stochastic (Langevin) equations of motion for various degrees of freedom of
the ferrofluid particles.

Rotation of the particle magnetic moments. First we point out that, in contrast to virtually
all numerical simulations performed on ferrofluids (see, e.g., Davis et al 1999, Huang et al
2005, Ilg et al 2003, Wang et al 2002, etc), in our model we explicitly take into account that
the magnetic moment of a ferrofluid particle is able to rotate with respect to the particle itself,
changing its orientation relative to the particle crystallographic axes. We shall see that this
additional degree of freedom may qualitatively influence the system behaviour.

The stochastic equation of motion for a magnetic moment μi of the i th particle is (Brown
1963) (below γ > 0 denotes a gyromagnetic ratio)

dμi

dt
= −γ [μi × (Hdet

i + Hfl
i )] − γ

α

μi
[μi × [μi × (Hdet

i + Hfl
i )]]. (1.1)

Here the first term describes the moment precession in the total effective field Htot = Hdet+Hfl,
and the second term accounts for the convergence of this precession trajectory to the direction of
Htot due to the magnetic energy dissipation. The power of this energy dissipation is controlled
by the dimensionless dissipation constant α. The effective field is the sum of the deterministic
part Hdet and the thermal field Hfl. The first part includes all magnetic interactions, in case
of a ferrofluid represented by an external field Hext, single-particle anisotropy field Han and
magnetodipolar interparticle interaction field Hdip. The thermal field Hfl is constructed to
account for thermal fluctuations within a magnetic particle leading to rotational diffusion of its
magnetic moment (Brown 1963). The components of Hfl are time-dependent random variables
with correlations defined as for a standard Wiener process:

〈H fl
i,ξ (0) · H fl

j,ψ(t)〉 = 2Dmag · δ(t)δi jδξψ . (1.2)

Here i, j denote the particle numbers, ξ, ψ = x, y, z and the noise power depends on the
system temperature T and the dissipation constant α: Dmag = α(1 + α2) · kT/γμ.

Translational motion of ferrofluid particles. For particles with sizes ∼10–100 nm and a carrier
fluid viscosity ∼0.01–0.1 Ps (both parameters typical for ‘standard’ ferrofluids) the inertial
term for the mechanical motion of particles can safely be neglected. In this approximation
the equation describing the translational motion of a ferrofluid particle expresses the balance
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between the viscous force −b · dr/dt (b is the viscous friction coefficient) acting on a moving
particle and all other forces:

bi
dri

dt
= Fdip

i + Frep
i + Fhydr

i + Ffl
i = ∇(μi H

dip
i )− ∇U rep

i + Fhydr
i + Ffl

i . (1.3)

These other forces, as was the case for the magnetic moment rotation, can be subdivided into
deterministic and the stochastic forces. To the first group belong (i) the magnetodipolar force
Fdip = −∇U dip = ∇(μHdip), (ii) the steric repulsion force Frep = −∇U rep due to the non-
magnetic shell surrounding the magnetic particle kernel, and (iii) the hydrodynamic interaction
force Fhydr (see section 4 below). It is important to note that the force due to the anisotropy
field should not appear in the equation describing the translational particle motion, because
this force leads to the rotation of a magnetic moment, which has no direct influence on the
translational particle motion. The stochastic thermal force Ffl responsible for a translational
Brownian motion has in the absence of the hydrodynamic interactions conceptually the same
simple correlation properties 〈Ffl

i,ξ (0) · Ffl
j,ψ(t)〉 = 2kT bi · δi jδξψδ(t) as the thermal field (1.2).

When hydrodynamic interaction is taken into account, the situation changes qualitatively—see
the discussion in section 4.

Rotational motion of ferrofluid particles. For the sake of simplicity we assume that a shape
of ferrofluid particles is approximately spherical. To describe the rotational motion of such
a particle we have to choose some arbitrary axis firmly connected to the particle. For the
magnetically simplest situation when every particle possesses a uniaxial magnetic anisotropy,
we choose this anisotropy axis (whose direction is given by the unit vector ni ) to describe the
particle rotation. Without the inertial term the corresponding equation of motion

ζi
dni

dt
= [ni × Tmag

i ] − [ni × Thydr
i ] − [ni × Tfl

i ] (1.4)

accounts for the balance between the viscous torque (ζi being the rotational viscous friction
coefficient) and the other deterministic torques caused by magnetic anisotropy Tmag = [μ ×
Han], hydrodynamical interaction Thydr and the random torque Tfl due to the thermal bath
fluctuations. Again, if hydrodynamical interactions can be neglected, the components of Tfl

have the same simple correlation properties 〈T fl
i,ξ (t) · T fl

j,ψ(t
′)〉 = 2kT ζi · δi jδξψδ(t − t ′).

We point out that the magnetodipolar interaction does not explicitly lead to a torque acting
on the particle: the corresponding field is applied to the magnetic moment of the particle. The
influence of this field on the rotational particle motion thus manifests itself in the change of the
magnetic moment orientation which leads to the change of the anisotropy torque. The latter
influence is already taken into account by the first term on the right-hand side of (1.4).

1.2. Relation between ‘magnetic’ and ‘mechanical’ times

Straightforward numerical integration of the system of Langevin equations (1.1), (1.3) and (1.4)
is extremely inefficient, which can be seen already after rewriting these equations in suitable
reduced units.

Convenient ‘magnetic’ units are the reduced particle moment mi = μi/μi = μi/MSVi

(here MS is the particle saturation magnetization and Vi its volume, so |mi | = 1), reduced
field h = H/MS and reduced anisotropy constant β = 2K/M2

S . In the last definition
K is the ‘normal’ anisotropy constant from the anisotropy energy expressions like Ean =
K Vi sin2(mi ni ) for the uniaxial anisotropy case, so that the value of this reduced anisotropy
β gives the relation of the anisotropy field to the maximal dipolar interaction field (from the
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Table 1. Dynamic processes and corresponding typical times for magnetic degrees of freedom in a
ferrofluid.

Expression for tchar via
General formula for its ‘magnetic’ time, material tchar for typical

Process kind characteristic time tchar and external parameters parameter values

Precession in an effective field Heff tprec ∼ 1
ω0

= 1
γ Heff

tprec ∼ 1
γMS

MS
Heff

= tmag
MS
Heff

tprec ∼ 10−10 s

Relaxation towards Heff tmag
rel ∼ 1

λ
· 1
γ Heff

tmag
rel ∼ 1

λ
· tmag · MS

Heff
tmag
rel ∼ 10−9 s

Rotational diffusion of tmag
diff ∼ 1

λ
· 1
γMS

· M2
S Vp
kT tmag

diff ∼ 1
λ

· tmag
�

tmag
diff ∼ 3 × 10−9 s

a magnetic moment

Jump over the energy barrier tNeel ∼ tmag
diff · exp

{
�E
kT

}
tNeel ∼ tmag

diff · exp
{
β

2�

}
Arbitrary

(Néel relaxation)

nearest possible neighbour). In these units the Langevin equation for the magnetic moment
motion is

tmag · dmi

dt
= −[mi × (hdet

i + hfl
i )] − α[mi × [mi × (hdet

i + hfl
i )]] (1.1b)

where the ‘magnetic time’ is defined as tmag = 1/γMS (γ ≈ 1.76 × 107 G s−1 is the
gyromagnetic ratio). For a typical ferrofluid made from magnetite (MS ≈ 400 G) particles,
tmag ≈ 1.4 × 10−10 s.

To construct convenient mechanical reduced units, we use as a natural length the average
radius of the magnetic particle kernel Rav, so that the reduced full particle radius (kernel radius
Rmag plus shell thickness hsh) is rtot

i = (Rmag,i +hsh)/Rav, the reduced radius-vector of a particle
position is si = ri/Rav and the reduced volume vi = Vi/R3

av. A convenient energy unit is the
demagnetizing self-energy Edem = VavM2

S of the particle with the average radius Rav, which
gives the reduced force defined as f = F · Rav/Edem = F · Rav/VavM2

S and reduced temperature
� = kT/Vav M2

S . Stochastic equations for translational and rotational particle motions can be
written in these reduced units as

9

2
tvisc · ρtot

i

dsi

dt
= vi · ∇s(mi h

dip
i )− ∇urep

i + fhydr
i + ffl

i (1.3b)

6tvisc · (ρtot
i )

3 · dni

dt
= vi · [ni × [mi × han

i ]] − [ni × T
hydr
i ] − [ni × Tfl

i ] (1.4b)

where the ‘viscous’ time tvisc = η/M2
S (η denotes the viscosity of the carrier fluid).

Equations (1.3b) and (1.4b) use explicitly the above-mentioned assumption that the particle
is a sphere with the hydrodynamic radius Rhyd = Rp + hsh, so that the translational b and
rotational ζ viscous friction coefficients are b = 6πηRhyd and ζ = 8πηR3

hyd. For a typical
water-based magnetite ferrofluid (η ≈ 10−2 P,MS ≈ 400 G) we obtain tvisc ≈ 0.6 × 10−7 s.

A quick inspection of the equations of motion ((1.1b), (1.3b), (1.4b)) written in reduced
units suggests that ‘magnetic’ and ‘viscous’ times tmag and tvisc represent typical timescales
characterizing the motion associated with the corresponding degrees of freedom. This would
mean that in a ferrofluid the magnetic subsystem relaxes much faster than the mechanical
one, simply because tmag (∼10−10 s) � tvisc (10−7 s). The situation is, however, much
more complicated due to many different kinds of dynamic processes involved. Typical
timescales characterizing all these processes should be analysed before one can proceed with
the elaboration of numerical algorithms suitable for the simulations using the basic Langevin
equations (1.1), (1.3), (1.4).

Although the expressions for these characteristic times given in tables 1 and 2 are mostly
self-explanatory, we shall briefly comment on each time listed there.
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Table 2. Dynamic processes and corresponding timescales for the mechanical motion of ferrofluid
particles.

Expression for tchar via
General formula for its ‘viscous’ time, material tchar for typical

Process kind characteristic time tchar and external parameters parameter values

Deterministic translational motion tdet
trans ∼ Rmag

vtrans
∼ Rmag

btrans
Fdet

tdet
trans ∼ tvisc · (1 + h̃)5 tdet

trans ∼ 2 × 10−6 s

Translational diffusion tdiff
trans ∼ 〈�rdiff 〉2

Dtrans
∼ R2

mag
kT/btrans

tdiff
trans ∼ 9

2 · tvisc
�

· (1 + h̃) tdiff
trans ∼ 10−6 s

Deterministic particle rotation tdet
rot ∼ 1

ωrot
∼ ζrot

Tdet
tdet
rot ∼ tvisc

β
· (1 + h̃)3 tdet

rot ∼ 10−6 s

Rotational diffusion tdiff
rot ∼ 1

Drot
∼ ζrot

kT tdiff
rot ∼ 6 · tvisc

�
· (1 + h̃)3 tdiff

rot ∼ 5 × 10−6 s

Dynamic processes where magnetic moments are involved and their characteristic times
(i.e., relaxation times of ‘magnetic’ degrees of freedom) are collected in table 1. The timescale
for the moment precession (first row) is simply deduced from the textbook result for the
precession frequency of a magnetic moment in an given effective field (ω = γ H ) and then
rewritten to make explicit use of the magnetic time tmag = 1/γMS defined above, because the
latter time is a material parameter. The expression in the second row for the relaxation time of
a magnetic moment towards the effective field direction (due to the energy dissipation whose
rate is given by the dissipation constant λ) is valid for the most common case λ � 1; the
corresponding derivation can be found in Coffey et al (1996). The rotational diffusion time of
a magnetic moment (third row) characterizes its chaotic motion due to thermal fluctuations in
the absence of any external field and anisotropy (Coffey et al 1996) and hence depends only on
the dissipation λ, particle saturation magnetization MS and system temperature T .

The most complicated process is a thermally activated transition of a magnetic moment
over an energy barrier in a system with more than one local energy minimum. If the two
minima are separated by the energy barrier �E then for �E 	 kT the average transition time
depends in a very good approximation exponentially from the relation �E/kT (Arrhenius
law, see Hoenggi et al (1990) for details) as indicated in the second column of the last
row in table 1. The origin of the energy barrier determines its dependence on the system
parameters. In particular, for a single magnetic particle with the uniaxial anisotropy energy
Ean = K Vmag sin2 θ (where Vmag is the volume of a magnetic particle kernel, K the anisotropy
constant and θ the angle between the particle moment m and the anisotropy axis direction n)
the two equivalent energy minima (achieved for m ↑↑ n or m ↑↓ n) are separated by the
energy barrier �E = K V . In this case the relation �E/kT can be conveniently expressed
in terms of the reduced anisotropy β and temperature � as shown in the third column of the
last row.

Values of the corresponding characteristic times given in the last table column are
computed for the typical parameters of a water-based magnetite ferrofluid (diameter of a
particle magnetic kernel Dmag = 10 nm, particle saturation magnetization MS = 400 G,
reduced anisotropy β = 0.5, dissipation constant λ = 0.1) and external conditions (magnetic
field H ∼ MS and temperature T = 300 K). It can be seen that for the first three kinds of
dynamic process these times are in the range ∼10−9–10−10 s, which is mainly due to a very high
moment precession frequency (∼10 GHz) for typical magnetic materials. Additional factors
coming from the dissipation constant λ and reduced temperature � (∼1 for the parameter
values listed above) have a minor influence on these time values.

However, there exists an important exception—the characteristic time for the Néel
relaxation represented in table 1 with a bold question mark. This question mark means that
the exponential dependence of this time on the energy barrier (and the system temperature)
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does not allow us to give even a rough estimate of this time for a realistic system. In particular,
if the energy barrier arises, as in the example above, from the single-particle anisotropy, then a
very moderate distribution of particle sizes present in every real ferrofluid (even neglecting the
distribution of anisotropy constants and the interparticle interaction) leads to a huge dispersion
of the corresponding transition times: due to the cubic dependence of the particle volume (and
hence the energy barrier height) on the particle size, doubling the particle diameter from 10
to 20 nm (for other parameter values as given above) increases tNeel by nearly two orders of
magnitude—from 3 × 10−9 up to 10−7 s. This circumstance turns out to be very important by
the development of an efficient algorithm for the handling of the ferrofluid Langevin dynamics,
as will be discussed below. But before this discussion we briefly turn our attention to the
estimation of the ‘mechanical’ relaxation times.

Corresponding dynamic processes involving deterministic translational and rotational
motions as well as translational and rotational diffusion are collected in table 2. Characteristic
times for the deterministic translational particle motion (translational diffusion) are defined as
times during which a particle passes a characteristic distance within a system in process of
its deterministic motion (diffusion). As a natural characteristic distance we choose the radius
of a magnetic particle kernel Rmag, thus obtaining the simple estimates given in the second
column of table 2 (vtrans is the velocity of a particle with the friction coefficient btrans under the
influence of a deterministic force Fdet and Dtrans is the translational diffusion coefficient). As a
deterministic force acting on the particle we consider the magnetodipolar force which depends
on the particle moment and interparticle distance as Fdet = Fdip ∼ μ2/r 4

i j . We have chosen
this interaction because, in contrast to the steric repulsion, it is a long-range one, and thus
influences the particle motion not only during the particle collisions. Resulting expressions
for the characteristic ‘translational’ times are given in the third column. The factors (1 + h̃)
containing the ratio h̃ = h/Rmag of the particle shell thickness to its magnetic kernel radius
appear naturally because the magnetic moment value μ and the reduced temperature � are
defined via the particle magnetic volume Vmag ∼ R3

mag, whereas the friction coefficient btrans

and the minimal interparticle distance ri j contain the total particle radius Rmag+h. The presence
of this factor may be important for ferrofluids composed of very small particles where the shell
thickness is comparable to the particle size.

Estimation for typical times of the deterministic particle rotation and rotational diffusion
(the two last rows in the table 2) are obtained in a similar fashion assuming a characteristic
rotation angle ∼1 rad for a particle with the rotational friction and diffusion coefficients ζrot

and Drot. As a deterministic torque we have chosen the magnetic anisotropy torque Tmag,
which explains the appearance of the reduced anisotropy constant β in the expression for tdet

rot .
Numerical values of all ‘mechanical’ times given in the last table column are calculated

using the same parameters as ‘magnetic’ times. In addition, we have assumed a relatively thick
shell h ≈ Rmag to demonstrate the effect of this parameter (note that tdet

trans is much larger than
tdiff
trans despite� ∼ 1) and the carrier fluid viscosity η = 10−2 P (water).

1.3. Optimal simulation algorithms for various physical situations

The first conclusion which can be immediately drawn from the comparison of magnetic and
mechanical characteristic times presented in the tables above is that, except for the Néel
relaxation, all magnetic degrees of freedom relax much faster than the mechanical ones. For
this reason direct integration of the basic equations (1.1)–(1.4) is very inefficient in any case,
because the overwhelming majority of the computer time would be spent following the rapid
magnetic relaxation (mainly precession) according to equation (1.1), whereby the particles
would remain nearly immobile, as was already pointed out in Berkov et al (2003). On the
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other hand, we cannot simply treat magnetic relaxation as being always much faster than the
mechanical motion, because the Néel relaxation time could be arbitrary large, as discussed
above.

For this reason we have to analyse the relation between various energy scales relevant for
magnetic fluids and between corresponding relaxation times in order to construct an optimal
algorithm for every specific case.

Leaving aside the energy due to the steric repulsion potential (this short-range interaction
is assumed to act only during the direction particle collisions), we can distinguish between the
following characteristic energies for our system:

• Demagnetizing energy Edem ∼ M2
S Vmag of a single particle, which was used above to

construct the reduced temperature �. This is the self-interaction energy of the particle
magnetization with the magnetic field created by the same particle. For a spherical particle
this interaction does not depend on the moment orientation and hence is not important for
a real dynamic process, but the parameter combination by itself gives a good basis for the
analysis of other energy kinds (see below).

• Single-particle anisotropy energy Ean ∼ K Vmag = β

2 M2
S Vmag = β

2 Edem. This value gives
the energy barrier height between the two local minima of the anisotropy energy of a
magnetic moment for a particle with uniaxial anisotropy.

• Maximal dipolar interaction energy Emax
dip ∼ μH max

dip � μ2

r3
min

= (MS Vmag)
2

(2Rpart)
3 ∼ Edem. This

is the energy of the magnetodipolar interaction for two particles at the minimum possible
distance and it has the same order of magnitude as the self-energy Edem simply because
the minimal distance between two coated ferrofluid particles is approximately the same as
the diameter of their magnetic kernels.

• Thermal fluctuation energy ET = kT .

The relation between the anisotropy energy Ean and the magnetodipolar interaction energy Edip

determines the importance of the interaction effects: for Ean 	 Edem, i.e., for large reduced
anisotropy β 	 1, the dipolar interaction is weak and may be taken into account in the random
field approximation or even neglected.

The relation between the energy barrier height for magnetic relaxation DEmag and the
thermal energy kT determines the Néel relaxation time tNeel = tmag

diff · exp(�E/kT ) and thus
controls the relation between this time and ‘mechanical’ times given by tvisc. In the simplest
case when the magnetic relaxation barrier is determined by the single particle anisotropy,
the Néel time is determined by the relation between the reduced anisotropy β and reduced
temperature �: �Ean/kT = K V/kT = (β/2) · (M2

S Vmag/kT ) = β/2�. We can neglect the
Néel relaxation, if the corresponding relaxation time is larger (strictly speaking, much larger)
than the characteristic mechanical motion times, i.e., if tNeel = tmag

diff · exp(�E/kT ) 	 tvisc. For
the single-particle anisotropy barrier this condition means that the inequality

β

�
	 2 ln

(
tvisc

tmag
diff

)
(1.5)

should be fulfilled.
Based on the energy considerations presented above, we can draw a convenient phase

diagram for the visualization of ferrofluid parameter areas where certain processes may or
may not be neglected. Suitable variables for this diagram are (i) the reduced anisotropy
constant β = 2K/M2

S , which controls both the importance of magnetodipolar interaction
effects and the height of the energy barriers, and (ii) the ratio of the demagnetizing and thermal
energy Ẽdem = Edem/kT = M2

S Vmag/kT = 1/�. Taking into account that the saturation
magnetization MS for different magnetic materials varies mostly in a quite narrow region from
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Edem/kT = MS
2V/kT

0.1 1 10

(=
2K

/M
S

2 )

0.1

1

10

Critical line for
the dipolar interaction
Critical line for
the Neel relaxation

Parameter area for
typical ferrofluids

Magnetodipolar interaction important
Edem/kT

III

III
IIIa

Neel relaxation importantβ
β

Figure 1. Phase diagram showing where the magnetodipolar interaction effect (below the blue line)
and Néel relaxation (below the red line) are important together with the region of particle parameters
for typical ferrofluids (green elliptical area). The picture on the right shows the parameter areas
where different numerical algorithms should be applied—see text for details.

300 to 1000 G and the temperature entering into the second variable is nearly always equal to
the room temperature T = 300 K, this diagram can be also viewed as a diagram in anisotropy–
particle volume coordinates.

The resulting diagram is presented in figure 1 (note the logarithmic scales of both axes!).
The horizontal blue line β = 1 separates the region where magnetodipolar interaction effects
are important (below this line) from the parameter area where single-particle anisotropy
dominates. Correspondingly the hyperbola (1.5) βEdem = 2 ln(tvisc/tmag

diff ) ≡ CN ≈ 6 (the
value of CN is computed for system parameters used for the tables 1 and 2) confines the region
where the Néel relaxation should be taken into account3 (in the single-particle approximation).

The particle parameter region for typical ferrofluids (e.g., magnetite, maghemite and Co) is
roughly shown in the same picture as a green ellipse. Drawing this area we (a) have taken into
account that the ferrofluid particle diameters mostly lie in the range 5 nm � Dmag � 20 nm
and (b) have analysed many experimental studies showing that the range of reduced particle
anisotropy is normally 0.5 � β � 5. The slope of the ellipse indicates the well known fact that
the total anisotropy usually increases with decreasing the particle size, because the contribution
of the strong surface anisotropy becomes more important.

The division of the particle parameter plane (β, Ẽdem) into the four regions as shown in
figure 1 provides a convenient basis for developing reliable simulation algorithms. We consider
all these regions marked in figure 1 as I, II, IIIa and IIIb in the order of appearance.

• In region I the Néel relaxation is negligible and magnetodipolar interaction is much smaller
than the anisotropy field. This means that the rotation of the magnetic moment with respect
to the particle itself can be neglected, or, in other words, the model of rigid dipoles (dipoles
‘firmly attached’ to particles) is applicable. In this case the first Langevin equation (1.1)
can be omitted; the anisotropy field in the magnetic torque Tmag in equation (1.4) should
be replaced by the dipolar field Hdip, because the moment is assumed to be ‘attached’

3 We note in passing that although the concrete value of the ratio tvisc/tmag
diff depends, of course, on the particle

magnetization and some other parameters, the logarithmic dependence of the constant CN (which determines the exact
position of the hyperbola) on this ratio makes its dependence on these parameters negligible.
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to the anisotropy axis, so that the torque on the particle comes now from the dipolar
field acting on this moment. After this omission and replacement one is left with a
technically demanding, but conceptually simple task of solving the system of Langevin
equations (1.3), (1.4), as was done in nearly all papers devoted to numerical simulations of
ferrofluids including thermal fluctuation effects.

• In region II the situation is slightly more complicated. The dipolar interaction is still much
weaker than the anisotropy field, so that the particle moment is oriented almost along its
anisotropy axis. However, due to the small particle volume the anisotropy energy barrier is
comparable with the thermal energy and hence moment jumps between the two equivalent
directions of the anisotropy axis (Néel relaxation) are possible (model of rigid dipoles with
random flips). There is still no need to solve explicitly equation (1.1) to include these
jumps: they can be taken into account during the solution of the mechanical Langevin
equations as discrete events which happen with the probability p evaluated from the
Arrhenius law (p ∼ exp(−K V/kT )). This situation is expected for ferrofluids consisting
of very small particles (Dmag � 5 nm) with high single-particle anisotropy (β � 2).

• The region of the phase diagram below the line β = 1 (where the dipolar field is
comparable with or larger than the anisotropy field is apparently divided further into two
regions—IIIa, where the Néel relaxation is important, and IIIb, where this relaxation seems
to be negligible because �E 	 kT . However, we point out that the energy barrier in
the region IIIb was estimated as a single-particle anisotropy barrier without taking into
account magnetodipolar interaction. We have shown in Berkov (2002) that for β � 2 this
interaction significantly changes the energy barrier heights, and already for very moderate
particle volume concentration (c � 0.05) �E significantly decreases for a large fraction
of particles. For this reason the Néel relaxation in this parameter region cannot really be
neglected, which is indicated by the red hatching of this area in figure 1.

For this reason for the whole parameter region which is below either the red hyperbola
or the blue straight line in figure 1 the rigorous solution of the complete system (1.1)–
(1.4) is necessary. However, the separation of timescales into fast magnetic precession
and relatively slow mechanical motion can be used for the important optimization of the
solution method. Namely, the time step by the integration of the ‘magnetic’ equation (1.1) is
necessarily much smaller than the time step required to follow the mechanical motion described
by (1.3), (1.4). Hence the displacement of particles during a ‘magnetic’ step is going to
be negligibly small, which allows us to adopt the following strategy: using some kind of
an algorithm with an adaptive step-size control for the solution for mechanical equation, we
first predict the time interval �tmech for the next ‘mechanical’ step. Afterwards we integrate
the ‘magnetic’ Langevin equation during this time �tmech (using, as explained above, much
smaller ‘magnetic’ steps) neglecting the mechanical motion of particles. During this integration
we evaluate the time-averaged values of magnetic moments and torques which are then
substituted into the ‘mechanical’ equations to evaluate the forces and torques required to make a
‘mechanical’ step.

This method allows us to accelerate the calculations by several times even when the
hydrodynamic interaction is neglected, so that the major part of the computer time is spent
for the evaluation of the magnetodipolar interaction. The reason is that when we neglect
the mechanical motion during the integration of the magnetic moment trajectories, we can
evaluate and store at the end of each previous mechanical step all the position-dependent
dipolar interaction coefficients in the expression for the magnetodipolar interaction, so that
only the moment orientations must be updated. And for the hydrodynamic interaction included
the most time-consuming step is the evaluation of mechanical thermal fluctuation forces and
torques, which are correlated due to the hydrodynamic interaction (see the corresponding
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section below). Such an evaluation requires ∼N3 iterations due to the matrix decomposition
involved in the generation of arbitrary correlated random numbers. For this reason the re-
evaluation of the particle positions/orientations and corresponding fluctuation forces/torques
for each ‘magnetic’ step would make the whole method absolutely impractical.

2. Overview of the interparticle interactions in a ferrofluid

Ferrofluids belong to the most complicated systems among the colloids, because there exist
several entirely different interaction types between the ferrofluid particles: (i) short-range
repulsive interaction due to the presence of the coating layer on (ideally) each ferrofluid
particle; (ii) long-range anisotropic magnetodipolar interaction between magnetic moments of
ferrofluid particles; and (iii) long-range anisotropic hydrodynamic interaction arising because
each moving particle induces a stream in the surrounding fluid and this stream acts on all other
particles. In this section we briefly review all these interactions, leaving the detailed analysis
of the long-range ones to sections 3 and 4.

The short-range steric particle repulsion is the simplest interaction from the simulation
point of view, because the calculation of any short-range force for the whole system requires
only ∼N operations (N is the particle number) due to the possibility to introduce a final (and
in most cases even small) cut-off radius Rcut for such an interaction. Unfortunately, the form
of the corresponding repulsion potential U rep is still a subject of a controversial debate (see,
e.g., Jund et al (1995) and reference therein). The two most commonly used forms are the
Lennard-Jones potential U(r) = a/r 12 − b/r 6 (where the first term provides the required
repulsion) and the Yukawa exponential form U(r) = A · exp(−r/rc). The Lennard-Jones
expression was suggested a long time ago simply to accelerate the computation of the short-
range potential: when the attraction term −1/r 6 (which can be shown to result from the
self-consistent fluctuations of the electrical dipolar moments for neutral molecules) is already
calculated, the repulsion term can be computed very quickly as its square: 1/r 12 = (1/r 6)2.
The Yukawa potential can in principle be derived as the potential of an electrical double layer
of from the Debye–Hückel theory of strong electrolytes, but neither of these justifications if
valid at least for an organic-solvent-based ferrofluid with magnetic particles coated by a neutral
polymer shell (the situation for water-based ferrofluids with particles coated by hydrophile
surfactants requires a special analysis).

Because the actual form of U rep is unknown, we can choose an arbitrary analytical
expression based on several physically plausible requirements: (i) isotropy, (ii) short-
range character, and (iii) strong dependence on the interparticle distance (stronger than for
magnetodipolar attraction). We have chosen the following exponential form which satisfies all
these assumptions:

U rep(ri j) = A · exp

(

−ri j − (Rmag
i + Rmag

j )

δc

)

+ C. (2.1)

The potential decay radius δc should have the same order of magnitude as the particle shell
thickness. The prefactor A should ensure that U rep(Rmag

i + Rmag
j ) 	 Edip

max(R
mag
i + Rmag

j ) (the

maximal dipolar interaction energy for two identical particles is Edip
max = (π/3)M2

S Vp). The
cut-off radius for this potential Rrep

cut should satisfy the condition Rrep
cut − 2 maxi=1...N {Ri} 	 δc.

The constant C in (2.1) should in principle be present to avoid a potential jump at r = Rrep
cut ;

its value, however, has no influence on the system dynamics, because the repulsion force in
equation (1.2) is evaluated as Frep = −∇U rep.

Magnetodipolar interaction, in contrast to the steric repulsion, is a long-range interaction.
This means that the cut-off of this interaction is, strictly speaking, not allowed. However, as
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we shall explain in section 3.1, in many cases the Lorentz cavity (reaction field) method, which
uses such a cut-off procedure with some modifications, provides adequate results. In a general
case one has to resort to more advanced methods which fully take into account the long-range
character of the magnetodipolar field, i.e., to the Ewald or Fast Multipole methods. These
methods are discussed in detail in sections 3.2 and 3.3 correspondingly.

Hydrodynamic interaction (HD-interaction), resulting, as explained above, from the
particle-induced motion of the carrier fluid, is very different from all other interactions in the
system from two points of view. First, it is a so-called purely dissipative interaction, i.e., the
hydrodynamic interaction force appears for moving particles only and is proportional to the
particle velocities. For this reason HD-interaction does not enter into the potential energy
of a system (which by its definition may not depend on the particle velocities). Thus the
equilibrium thermodynamical properties of a ferrofluid (like its magnetization in the constant
external field as a function of temperature M(H, T )) do not depend on whether the HD-
interaction is taken into account or not. The second peculiarity of this interaction is a direct
consequence of its dissipative character: as will be shown in section 3.3, the very presence of a
hydrodynamic interaction leads to long-range correlations between thermal bath fluctuations on
various ferrofluid particles, which appear in the ‘mechanic’ Langevin equations (1.3) and (1.4)
as thermal fluctuation forces (torques). The generation of correspondingly correlated random
numbers, which is necessary to produce physically correct thermal fluctuations of the particle
motion, is very time consuming, because it amounts to the decomposition of a correlation
matrix (∼Z 3 operation for an Z × Z matrix). We shall return to this question in more detail in
section 3.3.

3. Methods for calculating the magnetodipolar interaction

The problem of the evaluation of the long-range dipolar field is especially difficult for a
ferrofluid, because it represents a disordered particle system, where this spatial disorder
prevents a direct application of the lattice-based fast Fourier transformation (FFT). FFT-based
algorithms provide the fastest possibility to handle the dipolar interaction both in systems with
open boundary conditions (BCs), where they are used for a direct summation and periodic BCs,
where they are employed as a part of the lattice Ewald methods. In disordered systems where
the translational symmetry of particle positions is absent, one can either apply the fast multipole
method (FMM) (Greengard 1988) or map the initial system onto a regular lattice, where the
interaction field can be computed using the lattice Ewald procedure and then mapped back
to initial particle positions (particle-mesh Ewald methods). For systems with 1/r -interaction
(gravitational and Coulomb forces) corresponding FMM and particle-mesh Ewald methods are
well known (Greengard 1988, Hockney and Eastwood 1981). In this section we will present
these methods for dipolar systems, but first we briefly discuss a much simpler Lorentz cavity
method which may be applied in many physically meaningful cases.

3.1. Lorentz cavity (reaction field) method

The idea of this method, which actually uses the modified cut-off procedure, is based on the
textbook result that the stray field of a homogeneously magnetized media within a spherical
cavity (Lorentz cavity) cut out inside this media is also homogeneous: Hdip = 4πM/3 (note
the plus sign of this expression in contrast to the stray field inside a homogeneously magnetized
sphere in vacuum!). If on some typical length scale lchar the magnetization of our magnetic
system can be considered as homogeneous, than one can calculate the dipolar field on the
given particle taking an explicit sum over all other particles inside the sphere with the radius
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Rdip
cut � lchar around this given particle and adding afterwards the contribution of particles

outside the sphere as the Lorentz term:

Hdip
i =

ri j �Rdip
cut∑

j �=i

3ei j · (ei j mi j )− mi j

r 3
i j

+ 4π

3
〈M〉 . (3.1)

The advantages of the method are obvious. First, it is conceptually very simple. Second, its
operation count is linear in the particle number N , because the properly chosen cut-off radius
does not depend on the system size and hence the average number of particles Lnb within the
cut-off sphere (which are called neighbours in this formalism) is constant, so that the number of
operations needed to calculate the dipolar field on all particles is ∼Lnb ·N . Third, there exists a
standard recipe for choosing Rdip

cut : one should start with lchar and increase the cut-off radius until
the result does not change any more (within statistical errors, of course). For our specific case-
disordered system of fine magnetic particles the obvious characteristic length is the average
interparticle distance 〈�r〉. For system of randomly placed particles we have shown (Berkov
and Gorn 2001) that already Rdip

cut = 2 〈�r〉 is large enough to provide cut-off-independent
results even for such a subtle quantity as AC susceptibility.

However, one should be aware of the obvious limitation of the method, which is the
direct consequence of the assumption that the medium is homogeneously magnetized on a
corresponding length scale. If particles form spatial structures whose characteristic size is
comparable with the side of the simulation box, then the Lorentz method badly fails and one
should use other algorithms which explicitly take into account the positions of all particles in
the system to compute Hdip on the given particle (see sections 3.2 and 3.3 below). Obvious
examples of such situations are the formation of (i) long magnetic particle chains in an external
field or (ii) aggregates of various shapes in the absence of external field when the particles are
so large that thermal fluctuations and coating cannot prevent the aggregation.

3.2. Ewald method: simple and lattice-based implementations

The famous Ewald method was invented at the beginning of the 20th century initially for
computing conditionally converging lattice sums for the Coulomb interactions in ionic crystals
and is now a standard method to calculate long-range interactions in systems with periodic
boundary conditions. In such systems direct summation over all field sources (e.g., charges in
Coulomb systems, dipoles in dipolar glasses, dislocations in crystal plasticity problems, etc) is
obviously impossible due to their infinite number and we are forced to use the Fourier expansion
over the reciprocal lattice vectors k corresponding to the infinitely repeated simulation cell. For
point field sources the Fourier components of such an expansion decay relatively slowly (or may
even not decay at all) with increasing magnitude of the wavevector k. By computer simulations
we have at our disposal only a finite number of the wavevectors, so that we are forced to cut
off the Fourier spectrum of our long-range interaction by some maximal and finite value kmax.
Due to the above-mentioned slow decay of the Fourier components these components at kmax

are not small, so the spectrum cut-off is sharp and hence leads to large artificial oscillations of
the interaction when transformed back to real space.

The Ewald method which we describe below for the specific case of a dipolar system cures
the problem by adding and subtracting a Gaussian dipole at each point where initially a point
dipole μi is located, i.e., adding and subtracting a charge distribution

ρG
i (r − ri) = − 1

(2π)3/2σ 5
· (r − ri ,μi) · exp

(
− (r − ri )

2

2σ 2

)
(3.2)
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(this operation obviously does not change the resulting field). Then the total field Hdip is
calculated as the sum of the contributions Hdip = Hdip

A + Hdip
B of two subsystems: the first

one consists of Gaussian dipoles (3.2) and the second one is composed from the original point
dipoles minus the Gaussian dipoles (3.2):

ρB(r) = −
N∑

i

[
μi · ∇δ(r − ri)− ρG

i (r − ri )
]

(3.3)

(the first term in square brackets represents the charge density corresponding to a point dipole
at the location ri ). The field created by a charge distribution in square brackets of (3.3) can be
computed analytically (α = x , y, z):

H α
B,i(r − ri ) =

[
3(α − αi )(μi�ri )

(�ri )5
− μαi

(�ri )3

]
fG(�ri )

+
√

2

π

(α − αi )(μi�ri )

(�ri )5
· exp

[
− (�ri)

2

2σ 2

]
(3.4)

where the function fG(r) decays exponentially with the distance:

fG(r) = 1 − erf
(
r/σ

√
2
)+√

2/π · (r/a) · exp
[−r 2/2σ 2

]
. (3.5)

The decisive advantage of such a decomposition of the original point dipole system is the
following. The field (3.4) from the second subsystem is a short-range one, because the initial
point dipole is screened by a corresponding Gaussian dipole with the same total moment but
having opposite sign. Hence this contribution can be calculated taking into account for each
particle the fields from several nearest neighbours only and it takes for the whole system of N
dipoles (particles) ∼ N operations. And the contribution from the first subsystem can be safely
calculated by the Fourier expansion technique, because due to the smooth Gaussian charge
distribution of the dipoles (3.2) their Fourier components decay rapidly with increasing k and
hence no spurious oscillation arise due to the numerically unavoidable spectrum cut-off at large
k. Details of this procedure can be found in Berkov and Gorn (1998).

Although the ‘native’ version of the Ewald method sketched above allows a reliable
evaluation of the dipolar field for simulations with periodic boundary conditions, its important
disadvantage for disordered systems is the high operation count (∼N2). The reason is that
in such systems the particle positions do not form a regular and translationally invariant
lattice, so that the Fourier expansion necessary to evaluate the long-range contribution from
the Gaussian dipoles (subsystem A) cannot be evaluated using the fast Fourier transformation
(FFT) technique: exponential factors exp(ikri ) should be computed for all wavevectors k and
all particle positions ri separately, leading to the operation count given above.

For this reason several lattice versions of the Ewald method have been developed (see the
corresponding overview, e.g., in Deserno and Holm (1998)), where various mappings of the
initial disordered system onto a regular lattice are used to enable the application of the FFT for
the computation of the long-range contribution from the system of Gaussian dipoles. Lacking
the space for the comparative analysis of all these versions, we would like to justify our choice
of the following algorithm.

(i) First we map the disordered system of point (spherical) dipoles at locations ri onto the
system of magnetic moments located on the lattice points rp (p is the 3D-index) using
some three-dimensional weighting function w3d(ri − rp):

μ̃(rp) =
N∑

i=1

μ(ri)w3d
(|ri − rp|

) =
Mnb∑

i=1

μi ·w
(|xi − xp|

)
w
(|yi − yp|

)
w
(|zi − zp|

)

(3.6)



Simulations of fast remagnetization processes in ferrofluids S2609

where we have assumed the w(r) can be written as the product of factors depending on
the coordinate differences along a single axis only. The whole method makes sense only
if the function w can be chosen to be strongly localized (see below), so that the sum over
formally all N particles in (3.6) is actually restricted to a few particles Mnb located near
the lattice node p.

(ii) At the second step we add and subtract to each point lattice dipole the two corresponding
Gaussian dipoles in the form (3.2), as in the ‘native’ Ewald method.

(iii) Next we compute the dipolar field of this obtained system as described above, i.e., as the
sum of the long-range contribution from the Gaussian dipoles located on the lattice and the
short-range contribution (3.4) from the composite objects ‘point dipole–Gaussian dipole’
which are also placed on the lattice.

(iv) The last step is the mapping of the obtained field on lattice points rp onto initial dipole
locations ri (using the same functions w(x) as in (3.6)).

The advantage of this straightforward version of the lattice Ewald method is not only the
possibility to use FFTs for computing the long-range part of the total dipolar field. Noting that
(a) the short-range contribution (3.4) depends only on the difference �r between the source
and target coordinates and (b) both source and target points are located on the lattice, we can
compute the short-range contribution as a discrete convolution also by the FFT technique. This
allows us to increase the number of nearest number shells included into the evaluation of the
short-range interaction part without additional time cost, so that the error associated with the
truncation of the short-range interaction part can be made arbitrarily small. Taking into account
that the evaluation of the long-range part via FFT for the lattice system is exact (there is no
error due to the cut-off at the maximal wavevector k present for a disordered system), we
conclude that the only error source for the algorithm described above is the mapping of the
initial disordered system onto a lattice, which can be easily controlled and reduced by choosing
the mapping scheme of a sufficiently high order (Deserno and Holm 1998). We have found that
the conventional second-order mapping using the function

w(x) =
{

3/4 − x2, 0 � |x | < 1/2
(3/2 − |x |)2/2, 1/2 � |x | < 3/2

(3.7)

(and w = 0 for |x | > 3/2) and the cubic lattice with the mesh size �x = Rpart gives by the
evaluation of the dipolar field the relative error ∼10−4, which turned out to be small enough for
all physical applications we have studied (see section 5).

3.3. Adaptation of the fast multipole method for the dipolar interaction

The fast multipole method (FMM) with its optimal operation count (∼N) has been proved to
be very useful by simulation of systems with gravitational and electrostatic interactions. By
simulations of dipolar systems, however, this method has been barely used probably due to
the following two reasons. First, the standard FMM (Greengard 1988) is based on the well-
known series expansion of the function 1/r and so can be readily applied to the evaluation
of electrostatic or gravitational potentials. The dipolar potential decays as ∼1/r 2, making the
analytical derivation of its multipole expansion not straightforward. The only attempt to use the
FMM for dipolar systems was made by Kutteh et al (see, e.g., Kutteh and Nicolas 1995), where
a few first multipole expansion coefficients for dipolar systems were calculated manually (in
Cartesian coordinates), which obviously imposes a strong limitations on the expansion order
and limits the simulation accuracy. Second, the lattice version (Deserno and Holm 1998) of the
Ewald method for the simulation of dipolar systems (Wang and Holm 2001) can be developed
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whose relatively straightforward implementation and favourable operation count ∼N log N
makes it a powerful competitor to the FMM.

In this section we derive the analytical expression of multipole coefficients for the dipolar
potential which can be directly applied to the calculations of magnetodipolar fields and forces
in ferrofluids (our short note (Gorn and Berkov 2004) contains only the final result of this
analysis) and compare afterwards the computational costs of the FMM and Ewald methods.
We show that by the optimal choice of the hierarchical structure for the FMM method and
the mapping procedure for the particle-mesh Ewald algorithm these methods demonstrate
comparable performance for systems containing up to ∼4 × 104 particles.

To derive the analytical expression for multipole coefficients of a dipolar potential, we first
recall that the Coulomb potential of a system of N charges qi (i = 1 . . . N) located at points
Qi = (ρi , αi , βi ) can be evaluated at the target point P = (r, θ, ϕ), r > ρi , using the well-
known series expansion 1/r ′

i = ∑∞
n=0 (ρ

n
i /rn+1) · Pn(cos γi) (here r′

i = r − ρi , γi = ρ̂i , r and
Pn are Legendre polynomials). The resulting expansion of the Coulomb potential is:

�(P) =
N∑

i=1

qi

∞∑

n=0

ρn
i

r n+1
Pn(cos γi ) =

∞∑

n=0

n∑

k=−n

Mk
n

Y k
n (θ, φ)

rn+1
,

where Mk
n = ∑N

i=1 qiρ
n
i Y −k

n (αi , βi ) are multipole coefficients and Y k
n denote spherical

functions. The FMM uses these coefficients for calculation of a far-field contribution to the
potential (the near-field part is evaluated by direct summation). Our aim is to evaluate these
coefficients for a system of dipoles. Afterwards they can be used in the dipolar FMM version
in the same way as in electrostatics.

We consider now a system of N dipoles μi located at points Qi = (ρi , αi , βi). We build
each dipole μi as a limiting case of the following standard construction: a pair of charges
q+

i = qi and q−
i = −qi are located at points Q+

i = (ρ+
i , α

+
i , β

+
i ) and Q−

i = (ρ−
i , α

−
i , β

−
i )

connected via the vector 2di (so that ρ+
i = ρi + di and ρ−

i = ρi − di ). The length di → 0
and the charge magnitudes qi → ∞ so that the product 2di qi = μi remains constant. For each
pair of charges we write the potential in the same way as for the electrostatic case using the
multipole coefficients:

Mk
n,i = lim

2di qi →μi

qi · [(ρ+
i )

nY −k
n (α+

i , β
+
i )− (ρ−

i )
nY −k

n (α−
i , β

−
i )].

Next we expand the expressions for ρ+
i and ρ−

i at the points Q+
i and Q−

i over the magnitude
di of the (small) vector di as (here and below d̃i = di/ρi ):

(ρ±
i )

n = (ρ2
i ± 2ρi di cosψi + d2

i )
n/2 = ρn

i

(
1 ± 2d̃i cosψi + o(d̃i)

)n/2

≈ ρn
i

(
1 ± n · d̃i cosψi

)
,

(ψi is the angle between ρi and di ) and expressions for Y −k
n over Cartesian coordinates of di

(taking into account that ∂Y k
n /∂r = 0) as

Y −k
n (α±

i , β
±
i )

�= Y −k
n (ρi ± di ) = Y −k

n (ρi )± (di ,∇) · Y −k
n (ρi )+ o(di )

� Y −k
n (αi , βi)±

(
di,α

ρi

∂Y −k
n (αi , βi)

∂α
+ di,β

ρi sinα

∂Y −k
n (αi , βi)

∂β

)
.

Next we transform the spherical coordinates of di to its Cartesian coordinates using standard
transition formulae (dα = dx cosα cos β+dy cosα sin β−dz sinα, dβ = −dx sin β+dy cos β)
and after reordering of terms obtain the desired expression

Y −k
n (α±

i , β
±
i ) � Y −k

n (αi , βi )± 1

ρi

(
di,x H −k

i,x,n + di,y H −k
i,y,n + di,z H −k

i,z,n

)
,
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Figure 2. Performance comparison of various methods used to calculate the dipolar field in systems
with periodic boundary conditions (see text for details).

(This figure is in colour only in the electronic version)

with the vector

Hk
i,n = 1

sinαi

( cosαi sinαi cos βi · ∂αY k
n (αi , βi )− sinβi · ∂βY k

n (αi , βi )

cosαi sinαi sinβi · ∂αY k
n (αi , βi)+ cos βi · ∂βY k

n (αi , βi )

− sin2 αi · ∂αY k
n (αi , βi)

)

.

(here ∂α ≡ ∂/∂α, etc). Substituting the expansions of ρ±
i and Y −k

n (α±
i , β

±
i ) into the formula for

the multipole coefficients and simplifying the notation as Y −k
n (αi , βi ) ≡ Y −k

n,i , we can continue
the calculation chain as follows:

Mk
n,i = lim

2di qi →μi

{
qiρ

n
i

[(
1 + nd̃i cosψi

)(
Y −k

n,i + (
d̃i ,H−k

i,n

))

− (
1 − nd̃i cosψi

)(
Y −k

n,i − (
d̃i ,H−k

i,n

))]}

= lim
2di qi →μi

ρn−1
i

[
2qi di · n cosψi · Y −k

n,i + (
2qi di ,H−k

i,n

)]

= nρn−2
i (μi ,ρi ) · Y −k

n,i + ρn−1
i (μi ,H−k

i,n ).

After taking the sum over all N dipoles we obtain the final formula

Mk
n =

N∑

i=1

n · (μi ,ρ i

) · ρn−2
i Y −k

n (αi , βi )+
N∑

i=1

(μi ,H−k
i,n ) · ρn−1

i .

3.4. Comparison of the method performances

In figure 2 we present the speed comparison of various methods discussed above plotting the
time required for one evaluation of the magnetodipolar field on all particles as a function of
the particle number. The absolute time values obviously depend on the specific computer
architecture, but the relation of times for various methods was found to be almost computer
independent as long as no parallel or multicore architecture was involved. All methods were
adjusted to obtain the dipolar field with the same average relative accuracy ≈10−3. The
adjustable parameters are: the number of wavevectors and the real space cut-off radius for
the standard Ewald method, the number of multipole moments taken into account for the FMM
and the lattice mesh size for the lattice version of the Ewald method.
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It can be clearly seen that the ‘normal’ Ewald method (blue triangles), which has been
accelerated by us in a standard way to obtain an operation count ∼N3/2 (the blue line is the fit
with the corresponding power law) becomes slower than both its competitors starting from the
particle number Np ∼ 104. We have strongly optimized the FMM by introducing additional
storage for the intermediate results and then the FMM was found to be comparable with the FFT
Ewald method already for the same moderate particle numbers ∼104. We expect the FMM to
become clearly superior for Np ∼ 3 × 104, where we could not test the lattice Ewald method
due to a high amount of computer memory required to store information for all nodes of the
large 3D lattice with mesh size comparable to the particle radius.

4. Hydrodynamic interaction

To introduce the analytical description of the hydrodynamic interaction, we use a simplified
model of a ferrofluid, the rigid dipole model, and consider the case when all particles are
equipped with magnetic moments of equal magnitude and immersed in an incompressible
carrier liquid. On the pertinent slow timescales the dynamics of these ferroparticles can be
viewed as a stochastic Wiener process.

We denote the position of particle n by Rn ∈ R
3, the orientation of its magnetic moment

by En ∈ S2 (the unit sphere surface) and put Xn = (Rn,En). On the Brownian timescale, the
probability density P(X, t) in the many-body configuration space, with X = (X1,X2, . . .), is
governed by the generalized Smoluchowski equation (Felderhof and Jones 1993)

∂

∂ t
P(X, t) =

∑

n,m

∂

∂Xn
· Dnm(X) · e−�(X)/kT ∂

∂Xm
e�(X)/kT · P(X, t) (4.1)

where the indices n,m label the particles. The potential�(X) involves magnetic interactions as
well as steric repulsion, while the many-body hydrodynamic interaction enters via the diffusion
tensor D̂(X), which is related to the Stokesian mobility tensor M̂(X) via the Einstein relation
D̂(X) = kBT M̂(X).

Numerical simulations of the Wiener process are based on the stochastic Langevin
equations (Kloeden and Platen 1995) associated with (4.1). In the Itô interpretation of the
stochastic integral the position X(t) is updated according to

X(t +�t) = X(t)+ V (X(t))�t +
√

kBT g (X(t)) ·Γ√
�t (4.2)

where �t is the time step, the drift velocity is given by

V(X) = −M̂(X) · ∂�(X)
∂X

− kBT
∂

∂X
· M̂(X) (4.3)

and Γ is a normalized Gaussian random force with zero mean and variance 〈ΓΓ〉 = 2 · 1̂. The
amplitude g(X) is defined by

M̂(X) = g(X) · gT(X) (4.4)

which amounts to a Cholesky decomposition of the symmetric positive-definite matrix M̂(X).
For numerical measurement of time-dependent correlation functions (corresponding to physical
observables) we have to average over the stochastic paths. Numerically effective treatment
of the hydrodynamic interaction requires fast algorithms for the computation of the mobility
matrix M̂(X) and its Cholesky decomposition (Banchio and Brady 2003).

We start with the computation of the mobility matrix for a given configuration X assuming
periodic boundary conditions. The basic cell V , which is assumed to be a cube with the side L,
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is decomposed into the fluid region V0 and the particles Bn, (n = 1, . . . , N). The fluid obeys
the quasistatic Stokes equations

η�v − ∇ p = 0
∇ · v = 0

(x ∈ V0) (4.5)

(here v(x) and p(x) denote the flow velocity and pressure, while η is the shear viscosity). On
the particle surfaces, ∂Bn, stick boundary conditions are applied

v = Un + RpΩn × n (x ∈ ∂Bn), (n = 1, 2, . . .) (4.6)

where Un and Ωn are the translational and angular velocities of particle n, respectively, while
Rp is the particle radius and n the outer normal vector.

By applying Green’s theorem, equation (4.5) can be transformed into the integral equation

v(x) = − 1

η

(
∇∇ −�1̂

)∑

m

∮

∂Bm

dS′ G2(x − x′) · fm(x) (x ∈ V0) (4.7)

where fm(x) = n · σ (x), with σ = 2η (∇v)S − p1̂, is the force density exerted by the fluid on
particle m. Moreover, G2(x) is the fundamental solution of the biharmonic problem

��G2(x) =
∑

λ∈Z3

δ(x − Xλ)− 1/L3 (x ∈ R
3)

∫

V
dV G2(x) = 0

(4.8)

where the sum runs over lattice Xλ = Lλ, λ ∈ Z
3. The explicit solution of (4.8) is

G2(x) = 1

L3

∑

λ∈Z3\0

1

K 4
λ

eiKλ·x (4.9)

with the sum running over the reciprocal lattice Kλ = (2π/L) · λ, (λ ∈ Z
3) (Hasimoto 1959).

Convergence of the sum (4.9) can be greatly improved by the Ewald method (Cichocki and
Felderhof 1989).

To identify the mobility matrix M̂(X) we first apply the boundary conditions (4.6), writing

Ṙn = Un = 1

4πR2
p

∫

∂Bn

dS v(x)

Ėn = −En × Ωn = − 3

8πR3
p

En ×
∮

∂Bn

dS n × v(x)
(4.10)

and insert (4.7) on the right-hand sides. This leads to a coupled set of integral equations for the
surface force densities fm(x), (m = 1, . . . , N), in terms of the particle velocities (Ṙn, Ėn),
which can be solved approximately, e.g., by expansion in surface harmonics. Moreover,
stationarity of the particle motion requires that the lowest-order moments of the force densities
are balanced by the direct forces and torques,

Fn =
∮

∂Bn

dS fn(x) = ∂�

∂Rn
, Tn = Rp

∮

∂Bn

dS n × fn(x) = En × ∂�

∂En
. (4.11)

It follows that there are linear relations

∂�

∂Rn
= −

∑

m

[
ςTT

nm · Ṙn + ςTR
nm · Ėn

]
,

∂�

∂En
= −

∑

m

[
ςRT

nm · Ṙn + ςRR
nm · Ėn

]
(4.12)
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which involve a friction matrix ζ̂ (X), and, upon inversion,

Ṙn = −
∑

m

[
MTT

nm · ∂�
∂Rm

+ MTR
nm · ∂�

∂Em

]

Ėn = −
∑

m

[
MRT

nm · ∂�
∂Rm

+ MRR
nm · ∂�

∂Em

] (4.13)

where the mobility matrix is defined via M̂(X) = ζ̂−1(X).
The crucial point of the calculation is, of course, the solution of the integral equations. In

fact, these are integral equations of the first kind, and therefore numerically poorly conditioned.
However, it is possible (Kim and Karrira 1991) to reformulate the problem in terms of integral
equations of the second kind, which are much better conditioned. Also it is possible to calculate
the mobility matrix directly, rather than via inversion of the friction matrix.

The lowest multipole approximation (the simplest within the above scheme) is given by

fn(x) = 1

4πR2
p

Fn − 3

8πR3
p

n × Tn + · · · = 1

4πR2
p

∂�

∂Rn
− 3

8πR3
p

n ×
(

En × ∂�

∂En

)
+ · · ·

(4.14)

which amounts to neglecting all multipole moments that are not compensated by the direct
forces (resp. torques). Although this model is only of limited value as far as quantitative
accuracy is concerned, it contains the basic physical features of the hydrodynamic interaction,
in particular its long-range and multi-particle character.

Inserting (4.14) into (4.7) and proceeding as described above, one arrives at the following
explicit expressions for the mobility matrix:

6πηRpMTT
nm(X) =

⎧
⎪⎨

⎪⎩

[
−Rp

∮

∂Ba(0)
dS�G2(x)+ (2π/3)R̃3

]
1̂ (m = n)

[
6πRp(∇∇ −�1̂ + (R2

p/3)∇∇�)G2(Rnm)+ 2π R̃31̂
]

(m �= n)

2η · MTR
nm(X) = (Em∇ − Em ·∇1̂)�G2(Rnm) (m �= n)

2η · MRT
nm(X) = (∇En − En · ∇1̂)�G2(Rnm) (m �= n)

8πηR3
pMRR

nm(X) =

⎧
⎪⎪⎨

⎪⎪⎩

[1 − (4π/3)R̃3](1̂ − EnEn) (m = n)[
2πR3

p(En × ∇)(Em × ∇)�G2(Rnm)

+ 2π R̃3(Em · En1̂ − EmEn)
]

(m �= n)

where Rnm = (Rn − Rm) mod L, R̃ = Rp/L and the rotation-translational self-coupling is
zero (matrix elements M̂RT

nn = M̂TR
nn = 0).

Efficient calculation of the mobility matrix M̂ is the subject of special research, the results
of which will be reported elsewhere. In the physical examples shown below we did not take the
hydrodynamic interaction into account.

5. Physical results

In this section we present several applications of the Langevin dynamics simulations for studies
of various ferrofluid properties, comparing, where possible, the results for the rigid dipole
model and the ferrofluid model with internal degrees of freedom.
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5.1. Equilibrium magnetization of a ferrofluid

The equilibrium properties of any physical system, being time independent, are normally not
a subject of the Langevin dynamics simulations, which are designed to study time-dependent
phenomena. However, this does not mean that the equilibrium properties cannot be studied
using Langevin dynamics: performing such simulations we can follow a system evolution
during a sufficiently long time to arrive at its thermodynamically equilibrium state. Starting
from this point, we can record any physical quantity of interest during the simulation run and
measure the corresponding average. If the system is ergodic, this time-averaged value coincides
with the corresponding ensemble-averaged value in the thermodynamically equilibrium state.
Such measurements of equilibrium properties using Langevin dynamics obviously make sense
only if the relaxation from the starting state to the equilibrium is so fast than it can be reached
during a reasonable computation time.

The practically most relevant ferrofluid property which can be measured by Langevin
dynamics simulations is its equilibrium magnetization as a function of temperature and external
field M(H, T ). In particular, in the rigid dipole model, where Néel relaxation and hence
the corresponding energy barriers are absent, the equilibration time has the same order of
magnitude as the rotational Brownian motion time τ rot

B = 3ηVp/kT of spheres with the
hydrodynamic radius of typical ferrofluid particles. For most ferrofluids this time is in the μs
range, making Langevin dynamics simulations meaningful. In many cases Langevin dynamics
may be even more efficient than the analogous Monte Carlo simulations. The reason is that
the stochastic integration time step does not depend on the system size, whereby the average
particle displacements which can be performed during one MC step strongly decrease with
growing system size (because by the random displacement of all particles energy fluctuations
grow with the system size when the average particle displacement is kept constant).

Corresponding detailed studies of the equilibrium ferrofluid magnetization have been done
in Wang et al (2002) within the rigid dipole model using the Langevin equations with the
inertial terms included. Such an inclusion is not really necessary for an overwhelming majority
of practically relevant cases, especially when the simulation goal is the study of the equilibrium
properties, but the results obviously remain valid.

Here we would like only to demonstrate that inclusion of the magnetic degrees of freedom
does not change the equilibrium ferrofluid magnetization, so that the results obtained within
the rigid dipole and flexible moment models should coincide. To do this, we begin with the
standard expression of the equilibrium ferrofluid magnetization, writing the average projection
of the unit magnetization vector on the field direction as

〈mz(H, T )〉 = 1

Z

∫
d�m

∫
d�n · mz · exp

{
− E(m,n,H)

kT

}
(5.1)

where for a non-interacting system the energy E depends only on the moment direction m,
direction of the particle anisotropy axis n and the external field H

E = −μ(m,H)+ K V sin2ψn̂,m = −μ cos θm − K V (n,m)2, (5.2)

and the statistical sum Z is represented by the same integral as written explicitly in (5.1),
but without mz in the integrand. By integration over the magnetic moment orientations �m

spherical coordinate axes are fixed due to the presence of an external field and the term (m, H)
in the energy (5.2). In contrast, the orientation of the spherical coordinate system used by the
integration over the orientation of the anisotropy axis directions�n may be chosen arbitrary. If
we choose the polar axis direction along the current direction of the moment the integral (5.1)
can be written as the product of factors dependent either on the moment direction or on the
orientation of the anisotropy axis with respect to the instantaneous moment orientation:
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Figure 3. Magnetization relaxation after switching off the external field for ferrofluids with different
particle concentrations (as shown in the legend). Particle parameters are Rmag = 10 nm, shell
thickness h = 2 nm, magnetization MS = 400 G. The solid lines are relaxation curves for the rigid
dipole model, and open triangles stand for ‘flexible’ magnetic moments with the reduced anisotropy
constant β = 2.0. The inset shows the dependence of the relaxation times (calculated from the
initial curve slopes) on the particle concentration.
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Figure 4. The same relaxation as shown in figure 3 for ferrofluids with ‘flexible’ magnetic moments
and various single-particle anisotropy constants β as shown in the figure. It can be clearly seen that
(i) already for the moderate anisotropy β = 1.0 the relaxation is much faster than for the rigid
dipole model and (ii) the influence of the magnetodipolar interaction is much stronger for a system
of particles with smaller anisotropy.

〈mz(H, T )〉 = 1

Zm × Zn

∫
d�m · mz · exp

{
μH cos θm

kT

}
×
∫

d�n · exp

{
− K V cos2 θn

kT

}
.

(5.1b)

The second factor cancels with the corresponding factor Zn from the statistical sum Z (which
can be factorized in the same way) and thus any information about the orientation of anisotropy
axes, the value of the anisotropy constant, etc, disappears from the average magnetization. This
proof can be easily generalized to the case of interacting particles, leading to the conclusion
that including the internal magnetic degrees of freedom does not change the equilibrium
magnetization properties of a ferrofluid.
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5.2. Magnetic relaxation after switching off an external field

One of the processes widely used by ferrofluid applications is the relaxation of the ferrofluid
magnetization after a ferrofluid is magnetized in an external field and this field is then switched
off. The relaxation dynamics of the ferrofluid magnetization in such an experiment can be
conveniently simulated using the Langevin dynamics, because the corresponding relaxation
time is of the same order of magnitude as the rotational diffusion time τ rot

B = 3ηVp/kT
mentioned above. In this subsection we present example results of such simulations for
a water-based (η = 10−2 P) ferrofluid consisting of identical particles with the following
parameters: magnetic kernel radius Rmag = 10 nm, shell thickness h = 2 nm, magnetization
MS = 400 G (magnetite). We study the effects of the anisotropy strength and magnetodipolar
interparticle interaction, which can be controlled by the changing the particle volume fraction
(concentration) c. All relaxation curves presented below were obtained by averaging over eight
independent runs on systems containing Np = 1000 particles each.

In figure 3 we compare the magnetization relaxation for the rigid dipole model and a
ferrofluid with ‘flexible’ magnetic moments. For particles with the magnetic radius given
above and a relatively large single-particle anisotropy β = 2.0 chosen for these simulations the
relation of the anisotropy energy barrier to the thermal energy is high (βM2

S Vmag/2kT ≈ 16).
Hence we expect that the Néel relaxation can be neglected and the two models give equivalent
results. This is indeed the case, as can be clearly seen by comparing the relaxation curves in
figure 3 for one and the same concentration obtained from the rigid dipole model (solid lines)
and ferrofluids with ‘flexible’ dipoles (open triangles). The only difference between the models
is a slightly lower initial magnetization in the model with ‘flexible’ dipoles, which is due to the
obvious reason that additional thermal fluctuations of magnetic moments around the anisotropy
axis decrease the equilibrium magnetization.

However, already for the anisotropy β = 1.0 (only two times smaller than in previous
simulations) the magnetization relaxation is substantially faster than for the rigid dipoles due
to a significant contribution of the Néel relaxation: compare, for example, the black lines
in figures 4(a) and (b) which show magnetization relaxation for systems of non-interacting
particles with β = 2.0 and β = 1.0. For β = 0.5 the Néel relaxation is so fast that it is
practically instantaneous on the timescale of the viscous Brownian motion (see the black line
in figure 4(c)). This happens because although the relation of the anisotropy energy barrier
to the thermal energy is still relatively large, βM2

S Vmag/2kT ≈ 4, the prefactor before the
exponent is so small that the corresponding transition time is much smaller then the Brownian
time τ rot

B (see the last row in table 1).
Another important effect clearly visible from our simulation results is a much stronger

influence of the magnetodipolar interparticle interaction for systems with smaller anisotropy
values. Whereas for β = 2.0 the decay time for the highest shown concentration (c =
0.12) is only about three times larger than for the non-interacting system (see inset to
figure 3), for a system with β = 0.5 the relation of corresponding relaxation times exceeds
tdec
c=0.12/tdec

non−int > 103. The reason for such an enhancement of the interaction influence is its
qualitatively different role in ferrofluids consisting of particles with high and low anisotropy
barriers. For particles with high anisotropy values the magnetodipolar interaction ‘only’ causes
substantial magnetic moments correlations of neighbouring particles, thus increasing somewhat
the corresponding relaxation time (such a ‘dynamic’ cluster relaxes slower than a single
particle). In contrast to the previous situation, in systems with low-anisotropy particles the
interaction field strongly increases the energy barriers for the Néel relaxation (Berkov 2002),
thus leading to the exponential increase of the magnetization decay time.
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Figure 5. Frequency dependences of real and imaginary parts of the AC susceptibility χ( f, T )
for ferrofluids with different particle concentrations (shown in the legend). Particle parameters are
Rmag = 7 nm, shell thickness h = 1.5 nm, magnetization MS = 400 G (rigid dipoles model).

5.3. AC susceptibility

Another important characteristic of a ferrofluid is its response to an alternating field,
which for weak field amplitudes is characterized via its AC susceptibility χ(ω) defined
as the proportionality factor between the Fourier expansion coefficient Mω of the system
magnetization M(t) and the corresponding Fourier coefficient Hω of the time-dependent
external field H(t): Mω = χ(ω) · Hω. Langevin dynamics provides the most straightforward
way to compute the AC susceptibility by its definition, namely applying to the system a
harmonic external field H = H0ez cos(ωt) of the given frequency along the z-axis and
measuring the in-phase and out-of-phase response of the z-component of magnetization (L
is the number of the time steps):

Re(χ) ≡ χ ′ = 1

H0
· 1

L

L∑

l=1

〈Ml,z 〉 · cos(ωtl),

Im(χ) ≡ χ ′′ = 1

H0
· 1

L

L∑

l=1

〈Ml,z 〉 · sin(ωtl).

(5.3)

To obtain, for example, the frequency dependence of the AC susceptibility at a given
temperature χ(ω, T ), one should repeat ‘measurements’ (5.3) at a set of frequencies
sufficiently ‘dense’ to resolve all features of χ(ω, T )-dependence, which makes these
simulations very time consuming. In principle, there exists an alternative way to compute
the AC susceptibility: one can simulate the system response to a short and steep pulse of
the external field. Such a pulse contains the contributions from all frequencies, so that a
suitable transformation of the system response (magnetization time dependence M(t)) would
provide at once the whole curve χ(ω). Unfortunately, numerical Fourier transformation of
noisy data is known as an ill-posed problem in the Hadamard sense (Press et al 1992), so
that extremely high data accuracy (very small statistical error) is required to obtain reliable
information concerning χ(ω). For this reason, we have chosen the method (5.3), because
it provides at least a possibility to estimate the measurements errors in a standard way and
achieve reliable results in a reasonable computer time.
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In figure 5 we plot χ(ω, T ) obtained within the rigid dipoles model at T = 300 K on a
system of Np = 1000 identical particles with the radii Rmag = 7 nm, shell thickness h = 1.5 nm
and magnetization MS = 400 G. Each point in figure 5 is the result of averaging (5.3)
over at least four independent runs with duration Ncyc = 5 field cycles of the corresponding
frequency. Again, the influence of the magnetodipolar interaction is of major interest. One
can see that with the increasing interaction strength (increasing particle concentration) the real
part of the susceptibility decreases for high frequencies and increases for low frequencies. At
the same time the magnitude of the imaginary susceptibility part χ ′′ increases in the whole
simulated frequency region, but this increase is much more strongly pronounced for lower
frequencies. The peak in the χ ′′(ω)-dependence shifts to lower frequencies with increasing
particle concentration, indicating the increase of the most probable relaxation time with the
dipolar interaction strength (in a qualitative agreement with Zubarev and Yushkov (1998)).
Such an increase of the relaxation time with the growing particle concentration was also
observed in our simulations of the magnetization decay after switching off an external field.
However, one should keep in mind that the magnetization decay in the latter case starts from
the magnetization state which is qualitatively different from the nearly demagnetized state for
which the linear AC susceptibility shown in figure 5 was ‘measured’, so that this similarity
requires a special discussion.

Comparison of these results with simulation data obtained for a model with ‘flexible’
dipoles and with analytical theories will be presented elsewhere.

6. Conclusions and outlook

In this paper we have presented an overview of various numerical methods which should
be used for Langevin dynamics simulations of ferrofluids for different relations between the
characteristic system energies. Special attention in this discussion was paid to the fundamental
difference between the rigid dipole model of a ferrofluid and a model in which magnetic
degrees of freedom (rotation of a magnetic moment with respect to a particle itself) are
included. We have also presented a variety of methods for the calculation of the magnetodipolar
interaction and an analytical formalism for the treatment of the hydrodynamic interparticle
interaction in the lowest multipole approximation. Finally we have shown several physical
examples demonstrating the great potential of the Langevin dynamics by studies of the fast
remagnetization processes in ferrofluids.

Further methodical effort should be undertaken towards the development of efficient
numerical methods, especially for treating hydrodynamic interaction beyond the lowest
multipole approximation (valid only in the small concentrations limit). Next, potential
applications require simulations of aggregated ferrofluid: most ferrofluids have a substantial
fraction of aggregates in their composition. Finally we note that meaningful comparison
between simulations and experimental data will be possible only for carefully characterized
ferrofluids, for which all basic particle parameters are known from independent measurements.
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Appendix. Convergence rate of the multipole expansion for the dipolar potential

Here we derive the convergence rate of the multipole expansion series. In electrostatics, taking
p moments one achieves an accuracy of the order (a/r)p+1, where a is the radius of the sphere
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enclosing all N charges (a < r ). Now we are going to derive the corresponding error for the
dipolar potential. For this purpose we consider again the system of charge pairs as above and

introduce the angles γi = ρ̂ i , r, γ±
i = ̂ρ±

i , r and ϕi = d̂i , r. The accuracy ε (depending on the
number of moments p in the truncated series) can be estimated by the sum (ui = cos(γi)):

ε =
∣
∣
∣∣
∣
�(P) −

(
N∑

i=1

qi

p∑

n=0

(ρ+
i )

n P(u+
i )− (ρ−

i )
n P(u−

i )

rn+1

)∣∣
∣∣
∣

�
N∑

i=1

∣
∣
∣
∣
∣

∞∑
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qi

rn+1

(
(ρ+
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n P(u+

i )− (ρ−
i )

n P(u−
i )
)
∣
∣
∣
∣
∣

︸ ︷︷ ︸
�=εi

.

To estimate the residuals εi we need the asymptotics of (ρ±
i )

n � ρn
i (1 ± n(di/ρi ) cosψi ) and

of Pn(u
±
i ) which can be obtained from the Taylor expansion Pn(u

±
i ) � Pn(ui )+ P ′

n(ui) ·�u±
i .

The asymptotic expression for �u±
i can be derived in the following way (below δi = di/ri ):

�u±
i = cos γ±

i − cos γi = (ρ±
i , r)

ρ±
i · r

− ui = (ρ i , r)+ (di , r)
ρi (1 − δi cosψi ) r

− ui

= ρi rui ± dir cos ϕi

ρi (1 − δi cosψi ) r
− ui

= (ui ± δi cos ϕi) (1 ∓ δi cos ϕi)− ui � ±δi(cos ϕi − ui cosψi )

≡ ±δi · Cϕi ,ψi ,ui .

Substituting this expression in the expansion of Legendre polynomials and denoting

Ln(ui )
�= P ′

n(ui ), we have Pn(u
±
i ) � Pn(ui )± δi · Ln(ui) · Cϕi ,ψi ,ui . Finally we substitute the

asymptotic expressions for (ρ±
i )

n and Pn(u
±
i ) into the formula for εi :

εi �
∣
∣
∣∣
∣

∞∑

n=p+1

qiρ
n
i

r n+1

[
(1 + nδi cosψi )(Pn(ui)+ δi Ln(ui )Cϕi ,ψi ,ui )

− (1 − nδi cosψi )(Pn(ui )− δi Ln(ui)Cϕi ,ψi ,ui )
]
∣∣
∣
∣
∣

�
∞∑

n=p+1

2qiρ
n
i

r n+1
δi
(
n Pn(ui) cosψi + Ln(ui)Cϕi ,ψi ,ui

)
.

Using the inequalities |cosψi | � 1,
∣
∣Cϕi ,ψi ,ui

∣
∣ � 2, |Pn(ui)| � 1, |Ln(ui )| � n(n + 1)/2

(proof of the last one is a good exercise in the theory of special functions), we proceed as
follows:

εi �

∣
∣∣
∣
∣
∣
∣

∞∑

n=p+1

2qiρ
n
i

r n+1
· di

ρi
(n + n(n + 1))︸ ︷︷ ︸

n(n+2)

∣
∣∣
∣
∣
∣
∣
= μi

ρi

(ρi

r

)p+1
∣∣
∣
∣
∣

∞∑

n=0

ρn
i

r n+1
(n + p + 1)(n + p + 3)

∣∣
∣
∣
∣

= μi

ρi

(ρi

r

)p+1
[

1

r

∞∑

n=0

n2
(ρi

r

)n + (2p + 4)

r

∞∑

n=0

n
(ρi

r

)n

+ (p + 1)(p + 3)

r

∞∑

n=0

(ρi

r

)n
]

= μi

ρi

(ρi

r

)p+1
[

1

r
· (ρi/r) (1 + ρi/r)

(1 − ρi/r)3
+ (2p + 4)

r
· (ρi/r)

(1 − ρi/r)2
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+ (p + 1)(p + 3)

r
· 1

(1 − ρi/r)

]

= μi

(ρi

r

)p+1
[
ρi + r

(r − ρi )
3 + 2(p + 2)

(r − ρi )
2 + (p + 1)(p + 3)

ρi (r − ρi )

]

� C
(ρi

r

)p+1
p2 � C

(a

r

)p+1
p2,

where a is the radius of the sphere enclosing all N dipoles. Hence the total error ε ∼
Cn (a/r)p+1 p2 is slightly worse than its counterpart from electrostatics.
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